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Abstract

A concurrent system consists of processes communicating via shared objects, such
as shared variables, queues, etc. The concept of wait-freedom was introduced to cope
with process failures: each process that accesses a wait-free object is guaanteed to get
a response even if all the other processes crash. But what if these wait-free objects
themselves fail? For example, if a wait-free object "crashes", all the processes that
access that object are prevented from making progress. In this paper, we introduce the
concept of autdt-tolerant wait-free objects, and study the problem of implementing them.
We give a universal method to construct fault-tolerant wait-free objects, for all types
of "responsive" failures (including one in which faulty objects may "lie"). In sharp con-
trast, we prove that many common and interesting object types (such as queues, sets,
and test&set) have no fault-tolerant wait-free implementations even under the most
benign of the "non-responsive" types of failure. We also introduce several concepts and
techniques that are central to the design of fault-tolerant concurrent systems: the con-
cepts of self-implementation and graceful degradation, and techniques to automatically
increase the fault-tolerance of implementations. We prove matching lower bounds on
the resource complexity of most of our algorithms.
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1 Introduction

1.1 Background and motivation

A concurrent system consists of processes communicating via shared objects. Examples of
shared object types include data structures such as read/write register, queue, set, and
tree, and synchronization primitives such as testkset, fetchkadd, and compareswap.
Even though different processes may concurrently access a shared object, the object must
behave as if all these accesses occur in some sequential order. More precisely, the behavior
of a shared object must be linearizable ([HW90]). One way to ensure linearizability is to
implement shared objects using critical sections [CHP71]. This approach, however, is not
fault-tolerant: The crash of a process while in the critical section of a shared object can
permanently prevent the rest of the processes from accessing that object. This lack of fault-
tolerance led to the concept of wait-free implementations of shared objects. Informally, a
shared object is wait-free if every operation invocation on that object is returned a response
even if some or all other processes in the system crash.

Thus, a concurrent system in which all shared objects are wait-free is resilient to process
crashes. However, such a system is not resilient to shared object failures.1 For example,
the "crash" of a single shared object stops all the processes that need to access that object.
Motivated by this observation, we study the problem of implementing walt-free shared
objects that are also fault-tolerant. With such objects, the system is guaranteed to make
progress despite process crashes and the failures of some underlying objects. To the best
of our knowledge, the issue of fault-tolerant wait-free shared objects has not been addressed
before. (To simplify notation, hereafter "object" denotes a "shared object".)

1.2 Object failures

We classify object failures into two broad categories: Responsive and non-responsive. We
require that objects subject to responsive failures continue to respond (in finite time) to
operation invocations. The responses may be incorrect. In contrast, objects subject to
non-responsive failures are exempt from responding to operation invocations. Such objects
may "hang" on the invoking process.

We divide responsive failures into three sub-classes: R-crash, R-omission, and R-arbitrary.
An object subject to R-crash failure behaves correctly until it fails, and once it fails, it re-
turns a distinguished response I to every invocation. As with R-crash, an object subject to
R-omission failures may return the correct response or a L. However, even if it responds I
to a process p, a subsequent operation invocation by a different process q may get a correct
response. This behavior models an object 0 made of several components, some of which
failed. The operation by p "ran into" a failed component of 0, while the one by q only
encountered correct components of 0. Finally, objects subject to R-arbitrary failures may
"lie", i.e., return arbitrary responses to operation invocations.

'Even "software" objects have underlying hardware components. The software and/or the hardware

could be faulty.

2



Similarly, we divide non-responsive failures into crash, omission, and arbitrary. An
object subject to crash failure behaves correctly until it fails, and once it fails, it never
responds to operation invocations. An object subject to omission failures may fail to re-
spond to the invocations of an arbitrary subset of processes, but continue to respond to the
invocations of the remaining processes (forever). The behavior of an object subject to an
arbitrary failure is completely unrestricted: it may not respond to an invocation, and even
if it does, the response may be arbitrary.

1.3 Fault-tolerant objects

Let T be an object type and let Z = (T1,T 2,...,T,) be a list of object types. A function
I: T x T2 x ... x T, -+ T is an implementation of T from Z if 0 = T(Ol,o2,.. .,on) is a
wait-free object of type T whenever o, (1 < i < n) is a wait-free object of type Ti. We call
0 a derived object (of I) and oi's the base objects of 0. 1 is t-tolerant for a failure model
M if 0 behaves correctly even if a maximum of t base objects of ( fail according to M.

The implementation I is a self-implementation if T = T2 = ... = Tn = T. In
other words, in a self-implementation the base objects are required to be of the same
type as the derived object. For example, consider the object type 2-process queue (i.e., a
queue that can be accessed by at most two processes). In Section 6.3, we show that (for
every t) there is a t-tolerant self-implementation of 2-process queu. for It-arbitrary failures.
Intuitively, this means that using a set of wait-free 2-process queues, t of which are subject
to It-arbitrary failures, we can implement a failure-free wait-free 2-process queue. Thus in
a self-implementation fault-tolerance is achieved through replication.

1.4 Results

To study whether a general object type has a t-tolerant implementation, we focus on two
particular object types: consensus 2 and register. Herlihy [Her9l] and Plotkin [Plo89]
showed that one can implement a wait-free object of any type using only consensus and
register objects. Thus, if consensus and register have t-tolerant implementations, then
every object type has a t-tolerant implementation.

We first study the problem of tolerating responsive failures. We give t-tolerant self-
implementations of consensus for R-crash, R-omission, and R-arbitrary failures. For
R-crash and fl-omission failures, our self-implementation is optimal requiring only t + 1 base
consensus objects if t of them may fail. For fl-arbitrary failures, our self-implementation is
efficient requiring O(t log t) base consensus objects. We also give t-tolerant self-implementations
of register for fl-crash, R-omission, and fl-arbitrary failures. Combining the above results
with [Her9l, Plo89], we conclude that every object type T has a t-tolerant implementation
(from consensus and register) for all responsive models of failures. Moreover, if T im-
plements consensus and register, then T has a t-tolerant self-implementation. This

2A consensus object supports two operations, propose 0 and propose 1, and satisfies the following two
properties. An operation gets a response v only if there is some prior invocation of propose v. Purther, the
response is the same for all invocations of both operations.
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implies that familiar object types such as (2-process) queue, stack, testksot, ietch&add,
and (N-process) comparosvap have t-tolerant self-implementations even for R-arbitrary
failures!

What about tolerating non-responsive failures? Unfortunately, the results are mostly
negative. We show that there is no 1-tolerant implementation of consensus even for crash
failures, the most benign of the non-responsive models of failures. 3 This immediately implies
that any object type T that implements consensus (such as queue, stack, testkset,
swap, compare&swap, etc.) has no 1-tolerant implementations for crash failures. In con-
trast, we show that register has a t-tolerant self-implementation even for arbitrary fail-
ures. In addition to these universality and impossibility results, this paper contains the
following results.

Let I be a t-tolerant implementation for failure model M. By definition, every derived
object of I is guaranteed to behave correctly even if up to t base objects fail according to
M. But what happens if more than t base objects fail? In general, the derived object may
experience a more severe failure than M! We say a t-tolerant implementation for a failure
model M is gracefully degrading if the failure of more than t base objects (according to
M) cannot cause the derived object to experience a more severe failure than M. From a
1-tolerant gracefully degrading self-implementation of any object type T for a failure model
M, we show how to recursively construct a t-tolerant self-implementation of T for M. This
provides a method for automatically increasing the fault-tolerance of an object.

In general, graceful degradation increases the cost of an implementation. For instance,
consider t-tolerant implementations of consensus for R-omission failures. As already men-
tioned, there is such an implementation using only t + 1 base objects. However, this im-
plementation is not gracefully degrading. In fact, we show that, in this case, graceful
degradation requires at least 2t + 1 base objects, and we give a matching algorithm.

We prove that there is a large class of object types that have no gracefully degrading
implementations for R-crash. Intuitively, this means that whatever the implementation,
the failure of the implemented object will be more severe than R-crash, even if all its base
objects can only fail by R-crash.

We study the problem of translating severe failures into more benign failures [NT90].
In particular we show that given 3t + 1 (base) consensus objects, at most t of which are
subject to R-arbitrary failures, we can implement a (derived) consensus object that can
only fail by R-omission. We also show that this translation from R-arbitrary to R-omission
is resource optimal.

We also show that arbitrary failures can be viewed as having two orthogonal compo-
nents: omission and R-arbitrary. Specifically, for any object type T, given any t-tolerant
self-implementations V and .V of T for omission failures and R-arbitrary failures respec-
tively, we show how to construct a t-tolerant self-implementation of T for arbitrary failures.
This decomposition simplifies the problem of tolerating arbitrary failures.

'The impossibility of implementing a fault-tolerant consensus object from any finite list of base object,
one of which may crash, is shown using the impossibility of solving the consensus problem among a finite
number of proceues, one of which may crash ILAA87].
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2 Preliminaries

A concurrent system consists of processes communicating via (shared) objects. A process
interacts with an object by invoking an operation, and receiving a corresponding response
from the object. Processes may exhibit arbitrary variations in their execution speeds.
Further processes may crash. That is, a process may stop at any point in its execution and
never take any steps thereafter.

An object is specified by a type. An object type T is defined by N(T), OP(T) and
A(T), where N(T) is the maximum number of processes that may access an object 0 of
type T, OP(T) is the set of operations supported by 0, and A(T) specifies how 0 behaves
when these operations are applied sequentially. For concreteness, we assume A(T) is a
finite/infinite state non-deterministic automaton where some states are designated as initial
states. There is a transition from state s to state t labeled (op, v) iff invoking the operation
op when the object is in state s may leave the object in state t, returning the response v.
We say a sequential execution S = (op1, v), (op2, v2),..., (opk, vk) from state s is consistent
with T iff, viewing A(T) as a directed graph with states as nodes and transitions as directed
edges, there is a directed path labeled S from state s. Further S is consistent with T if
there is some initial state s of T such that S from s is consistent with T.

Each process may have at most one pending invocation on any given object. That is, a
process p cannot invoke an operation on an object 0 unless the previous operation of p on
object 0 has already received a response. However, operations from different processes may
overlap on an object. The sequential specification is therefore not sufficient to understand
the behavior of an object. We use linearizability defined by Herlihy and Wing [HW90]
as the criterion for the correctness of an object. Informally, inearizability requires every
operation execution to appear to take effect instantaneously at some point in time between
its invocation and response. We make this more formal below.

Let 0 be an object shared by the processes pi, i = 1, N. Let Et be an execution of
the concurrent system (p1,p2,... ,pN, O) up to time t. Define % (Et), the history of the
ezecution Et, as follows: (pi, op, v, t,, t,) E % (Et) iff process Pi invokes operation op in Et
at time t,, and that operation completes at time te returning the response v. Further,
(pi, op, *, t., oo) E 7(Et) iff process pi invokes operation op in Et at time t,, and that
operation does not complete by time t. We say 7t(Et) is linearizable with respect to type
T if and only if there exist a sequence S of (operation, response) pairs and a one-to-one
correspondence f from 7(Et) to S satisfying the following:

S 8 is consistent with respect to T.

• 1=1 I7N(Et)l, i.e., there are exactly as many elements in the sequence S as there are
in the set 2t(Et).

* If 77 = (pi, op, v, t., te) E 7t(Et) and f(17) = 5j, then 3j = (op, V). (Here 5j denotes
the jth element of the sequence S.)

" Ifi- = (pi,op,*,t,,oo) E It(Et) and f(1q) = S1, then 8j = (op, v) for some v E Z.
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I J1' (pi, op', , e,), = (pj,op"," V,' ,,e.) E N(A),andte, < e.', then f(17') =3k,
and f(j7") = 3, for some k < 1.

An object 0 is of type T if for every t, and every execution Et of the concurrent system

(pl,p2,. • • ,Pv, 0) up to time t, N (Et) is linearizable with respect to T. We say that that T
is an N-process type, if N = N(T). Any object of an N-process type is an N-process object.

Objects are either primitive or derived. A primitive object is completely "external" to
the invoking process. In other words, after a process invokes an operation on a primitive
object, it may simply wait for the object to return the response. In contrast, a derived object
O is "implemented" in software from base objects (each one of which is either derived
or primitive). Such an implementation provides a procedure Apply(pi, op, 0) (for each
op E OP(T) and 1 < i < N(T)) that process pi must execute in order to invoke an operation
op on 0 and receive the corresponding response from 0. Each step in Apply(pi, op, 0) is
either an invocation on a base object of 0, or checking if a base object has returned a
response to a previous. invocation4 , or some local computation.

We now define wait-freedom for primitive and derived objects. A primitive object is
wait-free if every operation invocation by every process gets a response in finite time. A
derived object 0 is wait-free if Apply(pi, op, 0) (for each op E OP(T) and 1 < i < N(T))
returns a response in a finite number of steps, regardless of the execution speeds of the
remaining processes. Unless mentioned otherwise, all the objects considered in this paper
are wait-free.

3 Models of failure

An object is only an abstraction with a multitude of possible implementations. For instance,
it ay be implemented as a hardware module in a tightly coupled multi-processor system,
or as a server machine in a message passing distributed system. Whatever the implementa-
tion, the reality is that hardware components sometimes fail, and when this happens, the
implementation fails to provide the intended abstraction.

Object failures may lead to unsatisfactory system behavior. For instance, the "crash"
of an object prevents the progress of all processes that access the object. Similarly, if the
object returns "incorrect" responses, the system behavior also becomes incorrect. It is
therefore important to implement derived objects that behave correctly even if some of the
base objects of the implementation fail. The cost and the complexity of such a fault-tolerant
implementation depends on the failure model, i.e., the manner in which a failed base object
departs from its expected behavior. In this paper, we define a spectrum of failure models
that fall into two broad classes: Responsive and non-responsive.

4Note that pi does not "block" for the response from the object; It only "polls" for the response, then
proceeds to the next step.
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3.1 Responsive models of failure

An object subject to responsive failures responds to every operation invocation. The re-
sponse is possibly incorrect, but the object never fails to respond. We describe below three
increasingly severe models of responsive failures.

3.1.1 R-crash

R-crash is the most benign model of object failure. This model is based on the premise
that an object detects when it becomes faulty. Informally, an object subject to R-crash
behaves correctly until it fails, and once it fails, it returns a distinguished response ± to
every operation invocation. More precisely, an object 0 of type T subject to R-crash failure
satisfies the following three properties. Let Et be any execution of the concurrent system
(PiP2, .. . ,PN, 0) up to time t, and W (Et) be the corresponding history, as defined before.

1. 0 is wait-free.

2. If (p, op, ., t, t.) E 7I(Et), (p', op', V', ., e) E N (Et), and t. < e, then v' = I.

3. Let 7t'(Et) = 7(Et) - {(p, op,-I,t.,t.) E 7(Et)}. Then 7V'(Et) is linearizable with
respect to T.

3.1.2 R-omission

Suppose 0 is a wait-free object implemented from some "hardware components". We
informally argue that 0 may exhibit a more severe failure than R-crash, even if one of its
"hardware components", say f, fails by R-crash. If a process p executes an operation op
on 0 that accesses f, f returns I to p, causing p to return I for op. Suppose a different
process q later executes some operation op' on 0 and op' does not require q to access f.
Process q does not "notice" the failure of f, and thus completes op' returning a non-i
response. This violates the "once I, everafter I" property of R-crash.

Suppose that after p gets I it does not access 0 again. To q, this scenario is indistin-
guishable from one in which p had crashed just before accessing f. Since the implementation
of 0 from its components is wait-free, it is designed to tolerate p's apparent crash, and the
non-i response to q must be correct.

In view of these considerationss, we formalize the R-omission model of failure as follows.
An object 0 of type T subject to R-omiseion failures satisfies the following properties.

1. 0 is wait-free.

2. Let Et be any execution of (PI,,... ,PN, 0) up to time t with the following property:
If a process pi gets a response I from 0 for some invocation in Et, then pi does not

'A formal jutifcation for the R-omission modelis given in Section 8.
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invoke any operation on 0 subsequently in El. Defining Wi(A,) as before, obtain
V'(Et) by replacing every tuple of the form (p, op, 1, t,, t.) by (p, op,* ts, oo). Then
%f'(Et) is linearizable with respect to T.

3.1.3 R-arbitrary

An object subject to R-arbitrary failures is free to return arbitrary responses to operation
invocations. The only property we require from such an object is that it be wait-free.

3.2 Non-responsive models of failure

Each responsive model of failure has its non-responsive counter-part. The difference lies in
the fact that an object subject to a non-responsive failure model may also fail to respond
to operation invocations.

3.2.1 Crash

Crash is the most benign of all non-responsive models of failure. Informally, an object
subject to a crash failure behaves correctly until it fails, and once it fails, it never responds
to any operation invocations. More precisely, an object 0 of type T subject to a crash
failure satisfies the following properties.

1. If in a (temporally) infinite execution of the concurrent system (Pll ,... ,PN, 0), 0
never responds to an invocation of some process pi, then the total number of responses
from 0 in that (temporally) infinite execution is finite.

2. If Et is any execution of the concurrent system (pl,p2,... ,pN, 0) up to time t, and
7N(E) is the corresponding history, then h(Et) is linearnzable with respect to T.

3.2.2 Omission

Omission failures are more severe than crash. An object subject to omission failures satisfies
only property 2 of the crash model.

3.2.3 Arbitrary

An object subject to arbitrary failures is not required to satisfy any properties at all. Thus
the behavior of such an object is completely unrestricted. In particular, the object may
choose not to respond to an invocation. Even if it does, the response can be arbitrary.
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4 Definition of fault-tolerant implementations

Let T be an object type and let C = (T1, T2,... ,T) be a list of object types (Ti's are not
necessarily distinct). A function 1 : T1 x T2 x ... x T --- T is an implementation of T
from C if 0 = Z(oi, 62,..., o,) is a wait-free object of type T whenever oi (1 < i < n) is

a wait-free object of type Ti. We call 0 a derived object (of I) and oi's the base objects of
0. The resource complexity of I is n, the number of base objects that make up a derived
object of the implementation. I is t-tolerant for a failure model M if 0 behaves correctly"
even if a maximum of t base objects of 0 fail according to M. Note that, in general, if
more than t base objects fail according to M, 0 may experience a more severe failure than
M. We say that I is gracefully degrading if: when base objects only fail according to M,
o is only subject to failures of type M. 7

The implementation I is a self-implementation if T 1 = T2 = ... = T, = T. In other
words, in a self-implementation the base objects are required to be of the same type as the
derived object.

5 Some basic results

Gracefully degrading self-implementations have the desirable property that they can be
composed recursively to realize any extent of fault-tolerance. This is formalized in the
following lemma.

Lemma 5.1 (Booster Lemma) If a type T has a t-tolerant gracefully degrading self- implementation
I of resource complexity n for a failure model M, then T has a (t2 + 2t)-tolerant gracefully
degrading self-implementation of resource complexity n 2 for M.

Proof(sketch) Let I = A(ol,o 2 , . ..,o,) F(ol,o2,. .. ,o,). Define
V = A(o,,o 2 ,...,o,2)F(F(ol,...,o,),F(o,+,,...,o2.),...,F(o(,_l),+l,... ,,,3)). It is

easy to verify that ' is a gracefully degrading (t2 + 2t)-tolerant self-implementation of T
for M. 0

Recursive application of the booster lemma gives the following corollary.

Corolary 5.1 If a type T has a 1-tolerant gracefully degrading self-implementation of re-
source complexity k for a failure model M, then T has a t-tolerant gracefully degrading
self-implementation of resource complexity O(t*Sh ) for M.

In Section 6.1.4, we illustrate how this corollary can be applied to construct a t-tolerant
self-implementation of consensus for R-arbitrary failures.

Our next result states that arbitrary failures have a responsive (R-arbitrary) and a non-
responsive (omission) component. Thus the problem of tolerating arbitrary failures can be

That is, 0 remains wait-free and linearisable with respect to T.
TEven if al the base objects of 0 fa
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reduced to two strictly simpler problems: tolerating R-arbitrary failures and tolerating
omission failures.

Lemma 5.2 (Decomposability of arbitrary failures) A type T has a t-tolerant self-implementation
for arbitrary failures-if and only if T has a t-tolerant self-implementation V' for R-arbitrary
failures and Z" for omission failures.

Proof (sketch) The "only if" direction is obvious. To prove the "if" direction, suppose
there are \= A(O1, 02, .. , o) FA(o, 02,...,o) and I" = A(ol, o2,..., on) F(ol, o2,..., on).
Define I = A(o1,o2,. . on) FO(FA(ol,. ..,om),... ,FA(O(n-)m+,...,onmn)). It can be
verified that I is a t-tolerant self-implementation of T for arbitrary failures. 0

6 Tolerating responsive failures

To study whether an arbitrary object type has a t-tolerant implementation, we focus on
two particular object types: consensus and register. Herlihy [Her9l] and Plotkin [P1o89]
showed that one can implement a wait-free object of any type using only consensus and
register objects. Thus, if consensus and register have t-tolerant implementations, then
every object type has a t-tolerant implementation.

6.1 Fault-tolerant implementation of consensus

In the following, we first define the object type N-consensus. We then present a t-tolerant
self-implementation of N-consensus that works for both R-crash and R-omission failures.
This implementation requires t + 1 base N-consensus objects, and is resource optimal.
Following that, we show how to translate R-arbitrar- failures of N-consensus objects to
R-omission failures. Our translation is also proved to be resource optimal. Although the
above two results can be chained together to obtain a t-tolerant self-implementation of
N-consensus for R-arbitrary failures, the resultant self-implementation is not resource effi-
cient: it requires 0(t2) base consensus objects. We therefore present an alternative efficient
self-implementation of resource complexity 0(t log t).

6.1.1 N-consensus object type

The consensus problem for a system of N processes is defined as follows. Each process pi
is given a binary input vi initially. The consensus problem requires each correct process
to eventually reach the same (irrevocable) decision value d such that d E {vl, v2,.. . , VN}.

The object type N-consensus is defined so that an object of this type makes the consensus
problem solvable in a system of N processes.

N-consensus is an N-process type that supports two operations, propose 0 and propose
1, and has the following sequential specification. If the first operation invoked is propose
v, then every invocation (including the first) is returned the response v. Together with

10



linearizability, this sequential specification implies that an object 0 is of type N-consensus
iff it satisfies the following three properties:

* Validity: 0 returns a response v E {0, J} to an invocation (from process p) only if
there is a prior invocation of propose v on ( (by some process, possibly p itself).

* Agreement: If ( returns V1,v2 to two invocations, and V1 ,V 2 E {0,1}, then v1 = v2.

* Integrity: The response returned to an invocation by 0 is either 0 or 1.

Let loc := Propose(p, v, () denote that process p invokes propose v on ( and stores the
response returned in its local variable loc.

6.1.2 Tolerating R-crash and R-omission failures

We present a t-tolerant self-implementation of N-consensus for R-omission failures. Since
R-omission failures are strictly more severe than R-crash, the same implementation also
works for R-crash failures.

A consensus object satisfies weak integrity if every response returned by the object is
in {0,1, L).

Proposition 6.1 Any N-consensus object that fails by R-omission satisfies validity, agree-
ment, and weak integrity. Conversely, if a failed N-consensus object satisfies validity, agree-
ment, and weak integrity, then the failure is R-omission.

Proof Follows from the definitions. C

01, 02,..., 0t+I : N-consensus objects

Procedure Propose(p, vp,, () /* vp E {0,1} *1
estimatep, w, k : noteger local to p

begin
estimatep := vp
fork := tot+1 do

w : propose(p, estimate,, O,)
if w # 1 then estimate, := w

return( estimate,)
end

Figure 1: t-tolerant self-implementation of N-consensus for R-omission
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Theorem 6.1 Figure I gives a t-tolerant self-implementation of N-consensus for R-omission
failures. The resource complexity of the implementation is t + 1 and is optimal.

Proof (Sketch)

Assume that at most t base objects fail by R-omission. We show below that the derived
object 0 is a correct N-consensus object.

1. 0 satisfies validity: Using Proposition 6.1, and the fact that p does not change
estimatep if a base object returns 1, it is easy to verify by an induction on k that
if estimatep equals some value u at any point, then there is a prior invocation (from
some process q) of Propose(q, u, 0).

2. 0 satisfies agreement: Since at most t base objects fail, there is an Ok (1 < k < t + 1)
that does not fail. So Ok returns the same response wi E {0, 1} to every process that
accesses it. This implies that for all p that access O, estimate, = w when p completes
the kth iteration of the loop, and due to Proposition 6.1, it never changes thereafter.
Thus 9 returns the same response wn to every p.

It is obvious that 0 always returns 0 or 1, and that O is wait-free.

Any t-tolerant self-implementation for R-omission failures must handle the case where
t base objects fail (by R-crash) initially. It is therefore obvious that the resource complexity
of t + 1 of our self-implementation is optimal. 3

The above (self) implementation is not gracefully degrading. For instance, suppose that
v. = 0 and vq = 1, and the t + 1 base objects fail by R-crash initially. It is easy to see that
o returns 0 to p and 1 to q. Thus 0 does not satisfy agreement, and by Proposition 6.1,
the failure of 0 is more severe than R-omission. In fact, we will now show that 2t + 1 is
both a lower and upper bound on the resource complexity of a t-tolerant gracefly degrading
self-implementation of N-consensus for R-omissionO. The self-implementation that requires
2t + 1 base objects is given in Figure 2.

Claim 6.1 Let v be the value of estimatep and V be the value of V at the end of k iterations
(1 :_ k < 2t + 1) of the for-loop of Propos.(p, vp, 0) in Figure 2. Then v E {0,1}, and
Vp[1..k] contains only s ' and v 's.

Proof By an easy induction on k. E3

Theorem 6.2 Figure 2 gives a t-tolerant gracefully degrading self-implementation of N-consensus
for R-omission.

Proof Assume all failures of base objects are by R-omission. We first show that, even if
more than t base objects fail, 0 satisfies validity, agreement, and weak integrity:

*As will be shown later in Theorem 8.2, there is no gracefully degrading implementation of N-cousensus
for R-crash.
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O1, 02,. , 0 2t+1 : N-consensus objects

Procedure Propose(p, vp, 0) /* -vp E {0, 1} */
Vp[1..2t + 1], estimatep, w, k: integer local to p

begin

1 estimatep := vp
2 fork :=1 to2t+ldo
3 w propose(p, estimatep, Ok)
4 Vp[k] :=w
5 if (w # I)A(w # estimatep) then
6 estimate, := w
7 Vp[1... (k - 1)] := (±, I,..., Q
8 if Vp has more than t I's then

9 return( l)
10 else return(estimatep)

end

Figure 2: t-tolerant gracefully degrading self-implementation of N-consensus for R-omission

1. 0 satisfies validity: Using Proposition 6.1, and the fact that a process p does not
change estimatep if a base object returns I, it is easy to verify by an induction on
k that if estimate, equals some value u at any point, then there is a prior invocation

(from some process q) of Propose(q, ,u, 0).

2. 0 satisfies agreement: Suppose, for a contradiction, there exist two processes p and
q such that Propose(p, vp, 0) returns 0 and Propose(q, Vq, 0) returns 1. From Claim

6.1, and lines 8, 9 of the algorithm, it follows that VTp has at least t + 1 O's at the end
of the execution of Propose(p, vp, 0) and Vq has at least t + 1 l's at the end of the
execution of Propose(q, vq, 0). This is possible only if there is a k (1 < k < 2t+1) such
that Propose(p, estimatep, Oh) returned 0 and Propos*(q, estimateq, Oh) returned 1.
Thus Ok does not satisfy agreement. By Proposition 6.1, the failure of 0, is not

R-omission, a contradiction.

3. 0 satisfies weak integrity: Trivial to verify.

4. O satisfies integrity if at most t base objects fail: Let Ok, Ok,..., OA (kI < k2 <
•.. < k) be all the correct base objects. Since at most t fail, we have I > t + 1.
By the integrity and agreement properties of k,, there is a v E {0, 1} such that for
all p, Propose(p, estimatep, Ok1) returns v. Thus for all p estimatep = v at the end
of k1 iterations of the for-loop in Propose(p, vp, 0). Using this and Proposition 6.1,
it is easy to verify that at the end of the execution of Propos.(p, vp, 0), Vp[k,]= v
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and estimatep = v for all p and for all I < i < 1. This implies, by lines 8, 9 of the
algorithm, that Propose(p, vp, 0) returns v.

From 1, 2, and 4 above, we conclude that the self-implementation is t-tolerant for R-
omission. From 1, 2, and 3 above, together with Proposition 6.1, we conclude that the
self-implementation is gracefully degrading for R-omission. 0

Theorem 6.3 The resource complezity of any t-tolerant gracefully degrading implementa-
tion of N-consensus (N _: 2) for R-omission is at least 2t + 1.

Proof For a contradiction, assume that there is a t-tolerant gracefully degrading imple-
mentation I from C = {T 1,T 2,... ,T }, of N-consensus for R-omission, where n < 2t. Let
0 =,1(01,02,..., On). Consider the following interleaving of processes p and q.

Scenario

1. Process p invokes Propose(p, 0, 0) and executes the steps of Propose(p, 0, 0) until ei-
ther it accesses exactly t base objects or it completes the execution of Proposep, 0, 0),
whichever is earlier. Let Sp denote the set of base objects accessed by p. Every base
object 0 E Sp behaves correctly to p's invocations. Note that IS.1 < t.

2. Process q invokes and completes the execution of Propose(q, 1, 0). Let Sq denote the
set of base objects accessed by q, and Tq = Sq - Sp. The base objects behave as
follows: Every base object 0 E Sp accessed by q returns I to q and undergoes no
change in its state; every base object 0 E Tq behaves correctly to q's invocations. So
q sees at most ISpI < t failures of base objects.

3. Process p resumes execution (thus ISpI = t), and completes any remaining steps of
Propose(p, 0, 0). The base objects behave as follows: Every 0 E T accessed by p
returns I to p; every 0 E Sp - Tq accessed by p behaves correctly to q's invocations.
Note that q =Sq - Sp C {01, O 2 ,..., On} - Sp, and thus JTqI < n - t < t. So p sees
at most JTq <t failures of base objects.

In a scenario such as the above, we assume that all steps in item k strictly precede
every step in item k + 1.

We make the following conclusions from the above scenario.

1. From the characterization of how the failed base objects behave, it is clear that all
failures are by R-omission. Since I is gracefully degrading, the failure of 0 is no more
severe than R-omission. Thus, by Proposition 6.1, 0 satisfies validity, agreement, and
weak integrity.

2. In the scenario described, neither process "knows" that the other process is also
running. Thus, by validity and weak integrity, Proposo(p, 0, 0) must return either 0
or I, and Propose(q, 1, 0) must return either 1 or I.

14



3. In the scenario described, neither process sees more than t base object failures. Since I
is t-tolerant, it follows that neither Propose(p, 0, 0) nor Propose(q, 1, 0) may return
I. Together with Conclusion 2, this implies that Propose(p, 0, 0) returns 0 and
Propose(q, 1, 0) returns 1. Thus object 0 violates agreement (required by Conclusion
1). We conclude that I is not a gracefully degrading t-tolerant implementation.

0

6.1.3 Translation from R-arbitrary to R-omission

A t-tolerant translation from a failure model M to a (less severe) failure model M' for object
type T is a self-implementation I: T x T x ... x T -- T such that 0 = T(ol,o2,... on)
fails according to M' if a maimum of t base objects of 0 fail according to M (and the
remaining base objects are correct). Note that if no base objects fail, by definition of an
implementation, 0 does not fail either.

In this section, we present a t-tolerant translation from R-arbitrary to R-omission for
N-consensus. It is easy to see that this translation can be used along with the t-tolerant self-
implementation for R-omission to obtain a t-tolerant self-implementation of N-consensus
for R-arbitrary failures. This is the principal motivation for studying such a translation.
We will also show that the resource complexity, 3t + 1, of our translation is optimal.

Since a consensus object that suffers an R-arbitrary failure may return a non-binary
response, we find it convenient to define f-propose(p,v,O) as in Figure 3.

Procedure f-propose(p, v, 0)
begin

loc := propose(p,v,O)
if loc E {0,1} then

return(loc)
else return(0)

end

Figure 3: Filtering an arbitrary response to a binary response

Let 0 be the derived object of the translation in Figure 4. The base objects of 0 are
A[l... 2t + 1], B[1 ... t]. In the following claims, assume that at most t base objects suffer
R-arbitrary failures, and the remaining are correct.

Claim 6.2 0 satisfies weak integrity. Further, if no base object fails, 0 satisfies integrity.

Claim 6.3 0 satisfies ealidity.
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A[l ... 2t + 1], B[l... t] wait-free N-consensus objects

Procedure Propose(p, vp, 0)
countp[0..1], .w, i, beliefp : integer local to p

begin
1 Phase 1: count,[O..1] := (0,0)
2 fori:=lto2t+ldo
3 W := f-propose(p,vp,A[i])
4 countp[o] := countp[wo] + 1

5 Phase 2: Choose belief, such that
cotuntp[beliefpJ > cotsntp[Sbelefp .

6 for i := 1 to t do
7 if belief, 6 -propos(p, belief,,B[i])

8 return(l)
9 exit Propose
10 return(beliefp)

end

Figure 4: t-tolerant translation from R-arbitrary to R-omission for N-consensus

Proof Suppose 0 returns v E {0,11} to the invocation Propose(p, v, 0) (from process
p). Then v = belief, (by line 10), and count[v] = countp[beliefI,] _ t + 1 (by line 5). So
there is at least one correct base object A[i such that propose (p, vp, A[iI) returned v. By
validity of A[i], it follows that some process q invoked propose (q,vq,A[i]) where vq = v.

This implies that q invoked Propose(q, v, O). a

Claim 6.4 0 satisfies agreement.

Proof Suppose 0 fails to satisfy agreement by returning Vi E {0, 1} to some process p, and
v2 E {0, 1} to a different process q where v, 0 v2. 0 returns v1, to p implies vi- = beliefp.
Similarly v2 = belie1,. Since v1 # v2, we have beliefp # beliefq. It is easy to verify that
if all of A[l ... 2t + 1 are correct, then beliefp = beliefq. It follows that at least one of
Aj]...2t+1]fails.

Further 0 returns vI to p implies for all 1 < i < t propose(p, belief, B[i]) returns
beliefp = vi to p. Similarly, for all 1 < i < t propose(q, belie f,, B[i]) returns beliefq = 2
to q. Thus all t base objects B[1... t] fail by not satisfying agreement. Thus counting the
failed A[i]'s and B[iJ's, we have more than t failed base objects, a contradiction. 0

Together with Proposition 6.1, the above claims trivially imply the following theorem.

Theorem 6.4 Figure 4 presents a t-tolerant translation from R-arbitrary failures to R-
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omission failures for N-consensus. The resource complexity of the translation is 3t + 1.

Theorem 6.5 The resource complexity of any translation I from R-arbitrary to R-omission
for N-consensus is at least 3t + 1.

Proof For a contradiction, assume the resource complexity of 7 is n < 3t. We prove
the theorem through a series of claims, involving "indistinguishable" scenarios. Let 0 =
7(l o2,.. ., os). In the following we say a process p touches a base object oi if during the
execution of Propose (p, vp, 0), p executes propose(p,*, o).

Claim 6.5 Suppose p executes Propose (p, 0, 0) to completion. If all base objects are cor-
rect, then p touches at least t + I base objects.

Proof Suppose the claim is false, and p touches only oil , oil,... I oi. (m < t) before exiting
Propose(p, 0, (). Since all base objects are correct, (9 satisfies validity and integrity. Hence
Proposo(p, 0, () returns 0. Now consider the following two scenarios.

Scenario SI

1. p executes Propos p,0, O() to completion touching only oi,,..,oji, (m < t).
Propose(p, 0, 0) returns 0.

2. q executes Propose(q, 1, 0) to completion.

Scenario S2

1. oil, o12 , ... , oi., fail and behave as though they are touched by p exactly as in scenario
S1. This is possible since m < t.

2. q executes Proposo(q, 1, 0) to completion.

Since no base objects fail in Si, O behaves correctly. In particular, 0 satisfies integrity and
agreement. Thus Propose(q, 1, 0) returns 0 in S1. Clearly Si tq S2 (We write Si q S2
to denote that Scenarios Si and S2 are indistinguishable to process q). So Propose(q, 1, 0)
returns 0 in S2 also, violating validity. By Proposition 6.1, this failure of 0 in S2 is not
R-omission. Since fewer than t + 1 base objects fail in S2, the translation 17 is incorrect, a
contradiction. 0

Claim 6.6 Consider

Scenario S3

1. p executes Propose (p, 0, 0) up to the point where it has ezactly touched t base objects

iOi • • Oit.
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2. q executes Propose (q, 1, 0) to completion.

Then Propose (q, 1, 0) returns 1.

Proof Let S = {base objects touched by q} - {oi,oi2,. .. ,oi,}. Let oil, ,..., oh be
all the base objects in S arranged so that the first invocation of q on oh is before the first
invocation of q on oh+,. Note that k < n - t < 2t.

Let S2' represent scenario 52 when m = t. Since fewer than t + 1 base objects fail in
S2', the failure of 0 cannot be more severe than R-omission. Hence, by Proposition 6.1,
0 satisfies validity and weak integrity in S2'. So Proposo(q, 1, 0) returns 1 or ± in 52'.
Since S2' ;q S3, we conclude Propose(q, 1, 0) returns 1 or ± in 53. Further since no base
object fails in S3, 0 satisfies integrity in S3. So Propose(q, 1, 0) returns either 0 or 1 in
53. Together the above two conclusions imply the claim. 0

Claim 6.7 Consider

Scenario S4

1. p executes Propose (p, 0, 0) up to the point where it has exactly touched t base objects
oil 1, 6 .. , t •• Oit .

2. Let oj,, oj2,.. ., oj, be as defined above (note k < 2t). q executes Propose (q, 1,0) up
to the point where it has touched exactly {ojl, o,..., oil, }.

3. p completes the execution of Propose(p, 0, 0).

Then Propose (p, 0, 0) returns 0.

Proof Consider

Scenario S5

1. p executes Propose(p, 0, 0) up to the point where it has exactly touched t base objects
Oil , Oi,. •. I Oit .

2. The base objects oj, oj.., oj_, fail and behave as though they are touched by q
exactly as in S4.

3. p completes the execution of Propose(p, 0, 0).

Since k < 2t, the number of failed base objects in S5 = k - t < t, and therefore (by
Proposition 6.1) 0 satisfies validity and weak integrity. So Propose(p, 0, 0) returns either 0
or ± in SS. Since clearly S4 zp S5, Propose(p, 0, 0) returns either 0 or I in 54 also. However
since no base object fails in S4, 0 must satisfy integrity in S4. Thus Propose(p, 0, 0) returns
0 in S4. 0
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Claim 6.8 Consider

Scenario S6

1. p executes Propose (p, 0, 0) up to the point where it has exactly touched t base objects
oi l 7 Oi l .. I • Oit .

2. q executes Propose(q, 1, 0) to completion, returning 1, by Claim 6.6.

3. Let oj,, oj,, . .. , oj, be as defined above (note k < 2t). {Oj_ _, +  , o j , } fail
and behave as though they are never touched by q.

4. p completes the execution of Propose (p, 0, 0).

Then Propose (p, 0, 0) returns 0.

Proof Since $5 ;v S6, Propose(p, 0,0) returns 0 in S6. 0

From the above claim, it is clear that 0 does not satisfy agreement in S6. Hence, by
Proposition 6.1, the failure of 0 in S6 is more severe than R-omission. Since fewer than
t + 1 base objects fail in S6, the translation 1 is incorrect, a contradiction. This completes
the proof of Theorem 6.5. 0

6.1.4 Tolerating R-arbitrary failures

Since N-consensus has a t-tolerant self-implementation for R-omission failures, and has a
t-tolerant translation from R-arbitrary to R-omission failures, it follows that N-consensus
has a t-tolerant self-implementation for R-arbitrary failures also. However the resulting self-
implementation is expensive, requiring (3t + 1)(t + 1) base objects. Our main goal in this
section is to present a t-tolerant self-implementation for R-arbitrary failures whose resource
complexity is only 0 (t log t). This implementation employs the divide-and-conquer strategy.
In the following, we first present the base step: obtaining a 1-tolerant self-implementation
(Figure 5). This requires 6 base consensus objects, while the above mentioned approach
through translation requires 8 base consensus objects. Then we show the recursive step of
obtaining a t-tolerant self-implementation from a t/2-tolerant self-implementation (Figure
6).

Claim 6.9 If at most one of Oi, Os+1, and 0 i+2 (i = 1 or 4) fails, then an execution e of
Accss(p, 0, 0+1, 0+2, v) (See Figure 5) returns V only if there is some other execution
e' of Access(q, Oi, 041, and 0 i+2, ii) (for some q) that either precedes or is concurrent
with e.

Claim 6.10 If none of Oi, Oi+I, and Oi+2 (i = I or 4) fails, then, for all p and q, Access(p,
Oi, 0 i+1, Oi+2, vp) returns the same value as Access(q, Oi,Oi+I,Oi+ 2, vq).

Theorem 6.6 Figure 5 gives a 1-tolerant gracefully degrading self-implementation of N-consensus
for R-arbitrary failures.
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, : N-consensus objects (1 < i < 6)

Procedure Acc.ss(p, 01,02,03, v)
countp[O..1], w: integer local to p

begin
countp[0.11:= (0,0)
for i := 1 to 3 do

o := i-propos.(p, ,0)
count,(wl := countp~wo+1

if countp[O] > countp[l] then
return(0)

else return(l)
end

Procedure Propose(p, v, 0)
begin

v Access(p, 01,02,03,)
v := ccss(p, 0 4, 0s, 06, v)
return(v)

end

Figure 5: 1-tolerant sell-implementation of N-consensus for R-arbitrary failures

Proof Suppose that at most one of Oi (1 i < 6) fails. Then either none of 01,02, and
03 fails or none of 04, 05, and 06 fails. Validity of 0 follows from Claim 6.9. If none of

04, 05, and 06 fais, agreement of 0 follows from Claim 6.10. If none of 01, 02, and 03
fails, agreement of 0 follows from Claims 6.9 and 6.10. It is obvious that 0 always returns
0 or 1, is wait-free, and gracefully-degrading. 0

Given the 1-tolerant gracefully degrading self-implementation in Figure 5, by ap-
plying the Booster lemma (Lemma 5.1) we can obtain a t-tolerant self-implementation
of N-consensus for R-arbitrary failures. However, the resulting resource complexity is
0(t 2 6), which is even higher than the complexity of the implementation through transla-
tion mentioned above. We therefore present below an alternative efficient recursive strategy.
See Figure 6.

Theorem 6.7 Figure 6 gives a t-tolerant (gracefully degrading) self-implementation of N-consensus
for R-arbitrary failures of resource complexity 0 (t log t).

Proof We prove the theorem through a series of claims. In all of them we assume that at
most t base objects fail.
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Ao(l ... Ut + 11, AI(1 .. 3t + 11, B(1. ... 4t + 1]: (0-tolerant) N-consensus objects
01[Lj-i]-tolerant N-consensus object

02 ATj1 J -tolerant N-consensus object

Procedure Propose (p, vi,, 0)
countpO..11, WitnessCount[O..1], belie fp,ans1p, ans2p, Vi,, i, wo integer local to p'

begin
1 countp[0..1J, WitnessCountp[0.1] :=(0,070,0)

2 Phase1: for i:= 1to 3t +1do
3 to := f -propose (p, vp, A.,[i])
4 if wo = tip then countp 1 jti- countp~upl+l

5 Phase 2: anhl, : f-propose(p,vp,0i)

6 Phase 3: for i:= 1to Ut+l1do
7 wo := f-propose(p, anslp, B[i])
8 WitnessCountp[] :=WitnessCountp[oJ+1

9 Phase 4: for i:=l1to 3t +1do
10 to := f-pro pos@(p,vp,Aw;.[i])
11 if wo = VpJ then countp1iI := countP(Ui-]+1

12 Phase 5: Choose beliefp such that WitnessCosntp[belief] > WitrsessCountp[be-lief].
13 if WitnessCountp4beliefp] 2: U + 1 and countp[beliefp] 2! 2t + 1 then
14 return(beliefp); exit Propose
15 if WitnesCountp[belie I,] *2 2t + 1 and countp[beliefp] 2! t + 1 then
16 VIP=beliefp
17 elset4:VIP
18 ana2p propose(p,v', 02)
19 return(ans2p)

end

Figure 6: Efficient t-tolerant self-implementation of N-consensus for R-arbitrary failures
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Claim 6.11 If 01 fails, then 02 does not fail.

Proof Since 01 and 02 are derived objects of fyL--tolerant, and L-j-tolerant self-
implementations of N-consensus respectively, O1 and 02 tolerate up to r' - 1 and [Lj_-J
failed base objects respectively. Since at most t base objects fail, both O1 and 02 cannot
fail. 3

Claim 6.12 If 01 does not fail, then 0 satisfies validity and agreement.

Proof Suppose 01 does not fail. Since a correct 01 satisfies agreement, we have ansl,
ansl = v for all p, q. Thus every process proposes the same value v to every B[i] in Phase 3.
Since at most t objects in B[1 ... 4t + 11 lie (fail), beliefp = v and WitnessCountplbeliefp] >
3t + 1 (for every p).

Also by the validity of 01, some process q will have invoked propos.(q, v, 01) before
any process gets the response v from 01. This implies that q will have finished Phase
1 before any process begins Phase 3. Since at most t objects in A,[1... 3t + 1] may lie,
it follows that for all p, countp[v] _ 2t + 1 by the end of Phase 4 of p. Thus we have
WitnessCountp [belie fp] 3t + 1 and countp[beliefp] > 2t + 1 (for every p). Hence every p
decides v (the proposal of q) by line 14. El

Claim 6.13 If 01 fails, 0 satiefies validity and agreement.

Proof Suppose 01 fails. Then by Claim 6.11, 02 does not fail. We need to consider two
cases.

CASE1 Suppose some process p returns by line 14. This implies that WitnessCountp [beliefp]
> 3t + 1 and countp[beliefp] > 2t + 1. Since at most t base objects may fail, it follows that
WitnessCountq[beliefp] . 2t + 1 and count,[beliefp] . t + 1 (for every q). This implies, by
line 12, belief9 = beliefp, and let val = beliefp. Since WitnessCountq [beliefq] 2_ 2t + 1 and
countq[beliefe] 2. t + 1 (for every q), either q returns beliefq = vatl by line 14 and we have
agreement between p and q, or q sets vq' to beliefq = val by line 16. Thus every q that does
not return by line 14 proposes v' = val on 02. Since 02 does not fail, by validity of 02,
ans2q = Vi val, and q returns ans2q = val by line 19. Again we have agreement between
p and q.

To see that 0 satisfies validity, note that countp[beliefp] _ 2t + 1 implies that some
process proposed beliefp = val on at least t + 1 objects in A1,1iiq[l ... 3t + 1].

CASE2 Suppose no process returns by line 14. Then every q returns ans2q by line
19. Since 02 does not fail, we have (for all p, q) ans2p = ans2q = val. Thus 0 satisfies
agreement.

By the validity of 02, some process p must have proposed val to 02. That is u, = val.
In the algorithm, vp' equals either vp or belief,. If v' = v, then dearly 0 satisfies validity. If

' = beliefp 0 v,, then p must have executed line 16. It follows that countp[beliefp] _ t + 1.vp

This implies, considering that at most t objects in Akt/,, [1 ... 3t + 1] fail, that some process
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q proposed vq = beliefp on some object in Ablifp[1... 3t + 1]. Thus val = vp' = beliefp = vq
and Vq is the initial proposal of q. Thus 0 satisfies validity. 0

Claim 6.14 The resource complexity of the implementation in Figu,-e 4 is O(tlogt).

Proof Denoting the resource complexity of the t-tolerant (gracefully degrading) self-
implementation of N-consensus for R-arbitrary failures by f(t), we have the following
recurrence: f(t) = 2f(t/2) + 2(3t + 1) + (4t + 1) and f(1) = 6. Hence the result. 0

To complete the proof of Theorem 6.7, note that agreement and validity follow from
Claims 6.12 and 6.13. It is obvious that the implementation is wait-free, gracefully degrad-
ing, and that 0 satisfies integrity. 0

6.2 Fault-tolerant implementation of register

The register type supports two operations, read and write v. The sequential specification
is simple: read returns the most recent value written. Lamport defined a weaker (non-
linearizable) object known as safe register [Lam86]. In the following, we first show how to
build a fault-tolerant safe register from safe registers, some of which may suffer R-arbitrary
failures. We then resort to 'he register construction results in the literature to show that
rogister has a self-implementation for R-arbitrary failures.

Lemma 6.1 Using 2t + 1 1-reader, I-writer safe registers, at most t of which may suffer
R-arbitrary failures, we can implement a failure-free I-reader, 1-writer, safe register.

Proof (sketch) To read the safe register, the reader reads all base registers, and returns
the majority response. If there is no majority, it returns an arbitrary value. To write a
value v into the register, the writer writes r to all base registers. It is easy to verify that
the above strategy implements a safe register that behaves correctly even if a maximum of
t base registers suffer R-arbitrary failures. 0

It is possible to implement a multi-reader, multi-writer, atomic register using 1-reader,
1-writer, safe registers [Blo87, BP87, CW90, HV91, Lam86, NW87, Pet83, PB87, Sch88,
SAG87, Vid88, Vid89, VA86]. Thus we have the following theorem.

Theorem 6.8 rogistor has a t-tolerant self-implementation for R-arbitraryj failures.

6.3 Universality results

We now describe how to implement fault-tolerant wait-free shared objects of a generic type.
An object type T is finite if A(T) has only a finite number of states. Also let N-consensus
with reset be an N-process object type informally defined as follows: An object 0 of this
type behaves exactly like an object of type N-consonsus with the difference that 0 supports
an extra operation reset Applying "reset" to 0 will initialize 0 and make it available for

23



% -

a fresh round of consensus. The operation "reset" is required to work only in the absence
of concurrent operations9 .

Herlihy showed that every finite object type'0 has an implementation from (N-consensus
with reset, unbounded register) ([Her9l]). The use of unbounded registers was re-
placed by boolean registers by Plotkin ([Plo89]). Using Plotkin's result, together with
Theorems 6.7 and 6.8, we obtain the following corollary.

Coroliary 6.1

" Every finite object type has a t-tolerant implementation from (N-consensus with
reset, boolean register) for R-arbitrary failures.

* If a finite object type implements N-consensus with reset and boolean register
then T has a t-tolerant self-implementation for R-arbitrary failures.

Herlihy's construction can be easily modified to yield a universal implementation from
(N-consensus with reset, unbounded register) even for infinite object types. Thus
Corollary 6.1 holds even if T is an infinite object type, provided that boolean register is
replaced by unbounded register in the statement of the corollary.

Herlihy showed that queue, stack, test&set, fetchkadd etc. implement 2-consensus,
and compare&swap implements N-consensus [Her9l]. It is easy to show that test&set and
comparekswap implement boolean register, and queue, stack, and fetchkadd imple-
ment unbounded register. Thus,

Corollary 6.2 The following object types have t-tolerant self-implementations for R-arbitrary
failures: (2-process) queue, stack, testkset, fetchkadd, and (N-process) compare&swap.

7 Tolerating non-responsive failures

Unlike responsive failures, non-responsive failures are almost always impossible to cope
with. We first show the impossibility of implementing a consensus object from any finite
list of base objects, one of which may crash. We do so by a reduction from the consensus
problem among a finite number of processes, one of which may crash. The latter problem
is known to be unsolvable [FLP85, LAA87].

Theorem 7.1 There is no 1-tolerant implementation of 2-consensus for crash failures.

OTherefore 3-consensus with roset cannot be defined modularly through sequential specifcation and
linearisability.

"An object type T is finite if A(T), the automaton giving the sequential specification of 7, has only a

finite number of states.
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Proof Suppose the theorem is false and there is a finite list C {T1,T 2,...,T 1} of object
types such that there is a 1-tolerant implementation I of 2-consensus from £ for crash
failures.

Now consider the following concurrent system S in which all objects are registers. Pro-
cesses in S are {Pl,p2} U {qj l < j < 1}, and the registers are {decision} U {invocation(i,j),
response(j, i) 11 < i < 2, 1 < j K l}. We claim that the consensus problem is solvable in S
even if at most one process in S may crash. The following is the protocol. Let vi E {0, 1}
be the input of pi. The idea is that process qj (1 _< j < 1) simulates an object oj of type
Tj, and process pi (i = 1,2) simulates the execution of propose(vi) on the derived object
1(ol,. . . , o). The details are as follows.

Initialize all registers to 1. The process pi simulates the execution of the proce-
dure propose (vi) of the implementation I as explained below. If propose (vi) requires
pi to invoke some operation op on oj, pi appends op to the contents of invocation(i, j). If
propose(vi) requires pi to check if a response to some outstanding invocation on o has
arrived, pi checks if a response has been appended (by qj) to response(j, i). If propose(vi)

.quires pi to decide some value v, Pi first writes v in decision register, then decides it, and
halts execution. Also Pi periodically checks if the register decision contains a v E {0, 1}. If
so, it decides v and halts execution.

Process q3 simulates the base object o as follows. qi checks the registers invocation(1, j)
and invocation(2,j) in a round-robin fashion. When it notices that some operation op has
been appended to invocation(i, j), it applies op to the local copy of o that it maintains
and appends the corresponding response to response(j, i). Also qj periodically checks if the
register decision contains a v E {O, 1}. If so, it decides v and halts execution.

It is easy to verify that the above protocol solves the consensus problem among the
1 + 2 processes in S even if at most one of them crashes. To see this, consider the following
cases:

1. No process crashes: Since every qj, the process simulating object oj, is correct and
propose(vi) executed by pi (i = 1, 2) is a wait-free procedure, it follows that one of
p, and P2 or both eventually write a value v E {O, 1} into decision. Thus every correct
process eventually decides v.

2. pi crashes: By our assumption that at most one process crashes, process P2 and qj
(1 < j < 1), the process simulating object oj, are all correct. Together with the fact
that propose(v2) is a wait-free procedure, this implies that p2 eventually writes a
decision value v into deciion and decides v. Every other correct process eventually
observes v in decision and decides v.

3. p2 crashes: By a symmetric argument.

4. qk crashes (for some 1 < k < 1): This corresponds to the crash of the simulated base
object ok. Since .1 is 1-tolerant, the execution of propose(vi) by process pi (i = 1, 2)
eventually terminates. Thus one of Pl and p2 or both write a value v into decision.
Thus every correct process eventually decides v.

25



**

In all the above cases, since I is an implementation of 2-consensus the following holds:
if both p, and p2 write into the decision register, then they both write the same value, and
this value is either vt or V2.

We showed that we can use I to solve the consensus problem in system S, and this
contradicts the impossibility result of Louis and Abu-Amara [LAA87]. 0

We can strengthen the above result as follows. Suppose that at most one base object
may fail, and it can only do so by being "unfair" (i.e., by not responding) to at most one
process. Furthermore, suppose, the identity of this process is a priori "common knowledge"
among all the processes. Even with this extremely weak model of object failure, called
1-unfairness to a known process, we can prove the following:

Theorem 7.2 There is no 1-tolerant implementation of 2-consensus for 1-unfairness to
a known process.

Proof (Sketch) Assume the theorem is false, namely, there is a 1-tolerant implementation
of 2-consensus for 1-unfairness to process pi. Now proceed as in the proof of Theorem 7.1.
Cases 1, 2, and 3 still hold. Consider Case 4, where qk crashes (for some 1 < k < 1). This
corresponds to the crash of the simulated base object ak. This object is now potentially
unfair to both Pi and p2. But I tolerates unfairness to only pi. We circumvent this difficulty
by modifying p2's protocol as follows. If propose (v2) requires p2 to invoke some operation
op on some ol, p2 appends op to the contents of invocation(2,j), as before, but now it also
waits until a corresponding response is appended to response(j, 2) (by process qj). 1 Thus,

if P2 attempts to access Ok after the crash of qk, it will simply wait for the response forever.
Therefore, at worst, the crash of qk looks like O is unfair to pl, and P2 is extremely slow.
Since I tolerates the unfairness of one base object to Pl, I(o,. . . , oi) continues to behave as
a wait-free consensus object. Hence the procedure propose(vi) executed by P1 eventually
terminates returning the decision value. As before, this value is written into decision, and
eventually every correct process decides. Again, we have a contradiction to the impossibility
result in [LAA87]. 0

Let C be the class of all object types that can implement 2-consensus. From the above
two theorems we have

Corollary 7.1 For all T E C, there is no 1-tolerant implementation of T for crash or
1-unfairnes, to a known process.

From [Her9l] and this corollary, we conclude that Queue, Stack, Test&Sot, Fotch&Add,
Compare&Swap, and several other common types do not have a 1-tolerant implementation
for crash or 1-unfairness to a known process. In contrast to the above impossibility results
we show

Theorem 7.3 register has a t-tolerant self-implementation for arbitrary failures.

lit is easy to see that with this modification Cases 1, 2, and 3 still hold.
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This follows from

Lemma 7.1 Using 5t + 1 1-reader, I-writer safe registers, at most t of which may suffer
arbitrary failures, we can implement a failure-free I-reader, 1-writer, safe register.

Proof (Sketch) Informally, the reader invokes 'read' on all registers (on which it has no
pending invocation) and waits until 4t + 1 respond. It then returns the majority value. If
there is no majority, it returns an arbitrary value. The writer writes to all registers (on
which it has no pending write). It waits until 4t + 1 of them return a "operation completed"
response. It is easy to verify that the above strategy implements a safe register that works
correctly even if a maximum of t base registers suffer arbitrary failures. 0

8 Other basic results

Consider a system that supports a given set H of primitive hardware objects. Assume that
these objects may fail, but if they do, they are guaranteed to only 'Lail by R-crash. Suppose
we wish to build an object ( using only objects in H, and 0) is only required to function
correctly in the absence of failures. However, when objects in H fail by R-crash, we would
like 0) to fail only by R-crash. This last requirement is desirable for two reasons-

* The simple "once 1, everafter 1" property of R-crash is the most benign type of
failure.

* Such an object 0) appears like any other primitive hardware object of the system:
With 0), the system would be no different, in functionality and failure semantics,
from one that supports H U {0)} as its primitive hardware objects.

In our terminology, a (0-tolerant) gracefully degrading implementation is exactly what
we are looking for. The existence of such an implementation depends on the type of 0) and
the types of the objects in H. Unfortunately, as we show below, most objects do not have
such implementations even when H includes very powerful objects.

An object type T is order-sensitive if it is a deterministic N-process type (N > 2) and
the following holds: There exist state S in A(T), operations op, op! (not necessarily distinct)

in OP(T), and values u,v, u', v' such that each of (op, u),(op', u') and (op',v'),(op, v) is a
sequential execution from state S consistent with T, and u : v and u' # v'. Queue is an
example of an order-sensitive object type. To see this, instantiate S to the state in which
there are two elements 5 and 10 in the queue (5 in the front), and both op and op' to deq.
Now we have u = 5, u' = 10, vi' = 5, and v = 10. Thus u 6 v and u' : v', as required.
Stack, Test&Set, CompaxekSwap are some other examples of order-sensitive object types.
An object type is non order-sensitive if it is deterministic and not order-sensitive. Examples
of non order-sensitive types include register, sticky bit, move, and swap.

Theorem 8.1 There is no (0-tolerant) gracefully degrading implementation of any order-
sensitive object type for R-crash from any list of non order-sensitive object types.
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Proof Omitted. 0

Preserving the failures semantics of the underlying system is a highly desirable property
of an implementation. For R-crash, the above theorem shows that this property is not
achievable in many cases: implementations necessarily amplify the severity of the R-crash
failures of the underlying system. For example, consider a system that supports registers
and sticky bits in "hardware". In such a system any object can be implemented [Plo89],
including (for example) queues. Assume the given registers and sticky bits only fail by
R-crash. Can we implement a queue that also fails by R-crash? The above theorem shows
that this cannot be done!

Requiring a derived object to inherit the R-crash semantics of its base objects is even
more difficult if add the requirement that the derived object be 1-tolerant. Even if we do
not restrict the types of primitives available in the underlying system, such implementations
do not exist for most objects of interest! This is shown by the theorem below.

Theorem 8.2 There is no 1-tolerant gracefully degrading implementation of any order-
sensitive object type for R-crash.

Proof For a contradiction, assume C = {Ti,T 2 ,...,T,} is a list of types such that
there is a 1-tolerant gracefully degrading implementation I of T from £ for R-crash. We
prove the theorem through a series of claims, involving "indistinguishable" scenarios. Let
0 = 1(01,02,.. .O), and op, op', S, u, v, u', v' be as given in the definition of order-
sensitive types.

Claim 8.1 Suppose 0 is in state S, and processes p and q execute Apply(p, op, 0) and
Apply (q, op', 0) respectively. For any interleaving of Apply(p, op, 0) and Apply(q, op', 0),
either Apply(p, op, 0) returns u and Apply(q, op', 0) returns u' or Apply(p, op, 0) returns
v and Apply(q, op', 0) returns v'.

Proof In the linearization of the execution history, either Apply(p, op, 0) precedes Apply(q, op', 0)
or Apply(q, op', 0) precedes Apply(p, op, 0). This, together with the definitions of u, u', v, vt,

and the fact that T is a deterministic type, trivially imply the claim. 0

Claim 8.2 There exists a sequence a of steps (of p) and a step s (of p) such that the
following Scenarios Si and S2 are possible.

Scenario SI (scenario starts with 0 in state S)

1. Process p initiates and partially executes Apply(p, op, 0) by completing the steps in

of.

2. Process q initiates and completes (all the steps of) Apply (q, op', 0), returning v'.

3. p completes the remaining steps of Apply(p, op, 0), returning v.

Scenario S2 (scenario starts with 0 in state S)

28



1. p initiates and (partially) ezecutes Apply(p, op, () by completing the steps in a.s.

2. q initiates and completes (all the steps of) Apply(q, op', 0), returning u'.

3. p completes the remaining steps of Apply(p, op, 0), returning u.

Proof Clearly if process p executes no steps of Apply(p, op, () before process q initiates
and completes Apply(q, op', 0), then Apply(q, op', 0) must return v'. Further if p initiates
and completes all the steps of Apply(p, op, 0) (let 03 be this sequence of steps) before q
initiates and completes Apply(q, op', 0), then Apply(q, op', () must return u'. Together
with Claim 8.1 by which Apply(q, op', 0) must return either u' or v', the above implies that
there exists a sequence a of steps and a step s such that a.s is a prefix of 3 for which the
claim holds. C

Hereafter we will assume O is the base object accessed by p in step s.

Claim 8.3 Consider

Scenario S3 (scenario starts with 0 in state S)

1. p initiates and (partially) ezecutes Apply(p, op, 0) by completing the steps in a.s.

2. q initiates and completes (all the steps of) Apply(q, op', 0), returning u' (as in S2).

3. 01, 02,..., O. fail by R-crash.

4. p completes the remaining steps of Apply(p, op 0).

Then Apply(p, op, 0) returns u.

Proof Suppose Apply(p, op, 0) returns I. Since I is gracefully degrading, the failure
of 0 must appear like R-crash. This requires, given that Apply(q, op', 0) returns a non-i

response, that Apply(q, op', 0) precede Apply(p, op, 0) in the linearization order. Doing
so, however, implies that (op', u') is a sequential execution from S consistent with T. This

cannot be true since u' 0 v', T is deterministic, and (op', v') is a sequential execution from
S consistent with T. Thus Apply(p, op, 0) cannot return I.

Suppose Apply(p, op, () returns to where 1 ± w 36 u. Since in the linearization,
either Apply(p, op, () precedes Apply(q, op', 0) or Apply(q, op', () precedes Apply(p, op, 0),
it follows that either (op, to),(op', u') or (op', u'),(op, w) is a sequential execution from S
consistent with T. This cannot be true since T is deterministic and (op,u),(op',u') and
(op, t/),(op, v) are sequential executions from S consistent with T and w # u, u' # i.

We conclude that Apply(p, op, () must return u. 0

Claim 8.4 Consider

Scenario S4 (scenario starts with 0 in state S)
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1. p initiates and (partially) ezecutes Apply (p, op, 0) by completing the steps in a.s.

2. O fails by R-crash.

3. q initiates and completes (all the steps of) Apply(q, op', 0).

4. O,... ,O-I and Ok+1,..., 0 . also fail by R-crash.

5. p completes the remaining steps of Apply(p, op, 0).

Then Apply(p, op, 0) returns u and Apply(q, op, 0) returns u'.

Proof Clearly S4,-S3. Therefore, as in S3, Apply(p, op, 0) returns u in S4. Since I is 1-
tolerant, and since only Ok has failed by the completion of apply(q, op', 0), Apply(q, op', 0)
must return a non-I response. From the definitions of u, u', v, v', it is easy to verify that
the only non-i response that satisfies linearizability is u'. 0

Claim 8.5 Consider

Scenario SS (scenario starts with 0 in state S)

1. p initiates and partially ezecutes Apply (p, op, 0) by completing the steps in a.

2. Ok fails by R-crash.

3. q initiates and completes (all the steps of) Apply(q, op', 0).

4. 01,..., Ok-I and Ok+l,..., 0. also fail by R-crash.

5. p completes the remaining steps of Apply(p, op, 0).

Then Apply(p, op, 0) returns u.

Proof Clearly SSqS4 . Therefore Apply(q, op', 0) returns u' as in S4. By similar argu-
ments as in Claim 8.3, it can be shown that apply(p, op, 0) returns u. 0

Claim 8.6 Consider

aconario S6 (scenario starts with 0 in state S)

1. p initiates and partially ezecutes Apply(p, op, 0) by completing the steps in a.

L q initiates and completes (4l1 the steps of) Apply(q, op, 0).

S. All base objects 01, 02,. . . , 0, fail by R-crash.

4. p completes the remaining steps of Apply (p, op, 0).

Then Apply(p, op, 0) returns u, and Apply(q, op', 0) returns V'.
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Proof Since S6 p S5, Apply(p, op, () returns u as in S5. Since S6 -q S1, Apply(q, op', 0)

returns v' as in S1.

Neither (op, u),(op', v') nor (op, v'),(op, u) is a sequential execution from S consistent
with T. Hence the execution in Claim 8.6 is not linearizable. Thus the failure of 9 in S6 is
more severe than R-crash. We conclude that I is not a gracefully degrading implementation
for R-crash, a contradiction which concludes the proof of Theorem 8.2. 0

The above discussion raises some questions on the "practicality" of the R-crash model:
Even if "hardware" objects fail by R-crash, "software" objects don't. The R-omission model
defined in this paper does not have this serious limitation. In fact, for any t > 0 every
object type has a t-tolerant gracefully degrading implementation from (universal type,
register) for R-omission. In other words, implementations preserving the R-omission
semantics of the underlying system always exist. This is a formal justification for adopting
the R-omission model of failure.
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